

RELATÓRIO DO LEAMAT

EXPLORANDO A HOMOTETIA POR MEIO DO GEOGEBRA

ENSINO E APRENDIZAGEM DE GEOMETRIA

ANGRA ALVARENGA DA SILVA ANNA LUÍSA PESSANHA DOS SANTOS LUCAS OLIVEIRA AMORIM SÁVIO FIGUEIREDO DA SILVA THALITA DE OLIVEIRA LIMA

CAMPOS DOS GOYTACAZES - RJ 2021.1

ANGRA ALVARENGA DA SILVA ANNA LUÍSA PESSANHA DOS SANTOS LUCAS OLIVEIRA AMORIM SÁVIO FIGUEIREDO DA SILVA THALITA DE OLIVEIRA LIMA

RELATÓRIO DO LEAMAT

EXPLORANDO A HOMOTETIA POR MEIO DO GEOGEBRA

ENSINO E APRENDIZAGEM DE GEOMETRIA

Trabalho apresentado ao Instituto Federal de Educação, Ciência e Tecnologia Fluminense, *Campus* Campos Centro, como requisito parcial para conclusão da disciplina Laboratório de Ensino e Aprendizagem de Matemática do Curso de Licenciatura em Matemática.

Orientadora: Prof^a. Ana Mary Fonseca Barreto de Almeida e Prof. Leandro Sopeletto Carreiro

CAMPOS DOS GOYTACAZES - RJ 2021.1

SUMÁRIO

1 RELATORIO DO LEAMAT I	4
1.1 Atividades desenvolvidas	4
1.2 Elaboração da sequência didática	8
1.2.1 Tema	8
1.2.2 Motivação	8
1.2.3 Justificativa	8
1.2.4 Objetivo Geral	12
1.2.5 Público Alvo	12
2 RELATÓRIO DO LEAMAT II	13
2.1 Atividades desenvolvidas	13
2.2 Elaboração da sequência didática	13
2.2.1 Planejamento da sequência didática	13
2.2.2 Experimentação da sequência didática	20
3 RELATÓRIO DO LEAMAT III	23
3.1 Atividades desenvolvidas	23
3.2 Elaboração da sequência didática	23
3.2.1 Versão final da sequência didática	23
Etapa 1 - Introdução da sequência	25
Etapa 2 - Apresentação dos conceitos	27
Etapa 3 - Verificação da aprendizagem	27
4 CONCLUSÃO	30
REFERÊNCIAS	32
APÊNDICE	34

LISTA DE FIGURAS

Figura 1 - Conceito competência BNCC	9
Figura 2 - Competências Gerais BNCC	10
Figura 3 - Ilustração da Apostila	14
Figura 4 - Ilustração da Apostila	15
Figura 5 - Transformação Homotética	15
Figura 6 - Formulário Google	16
Figura 9 - Questão 2 Google Forms	18
Figura 10 - Questão 3 Google Forms	19
Figura 11 - Questão 4 Google Forms	19
Figura 12 - Slide Razão com Algebrismo	21
Figura 13 - Slide Razão mais Geométrico	22
Figura 14 - Ilustração Apostila	24
Figura 15 - Ilustração Apostila	25
Figura 16 - Transformação Homotética	25
Figura 17 - Formulário Google	26
Figura 18 - Questão 1 Google Forms	28
Figura 19 - Questão 2 Google Forms	28
Figura 20 - Questão 3 Google Forms	29
Figura 21 - Questão 4 Google Forms	29

1 RELATÓRIO DO LEAMAT I

1.1 Atividades desenvolvidas

A primeira semana de aula do semestre foi destinada à participação dos alunos na VI semana das licenciaturas e II encontro de programas institucionais de formação de professores, tais como: Programa Institucional de Bolsas de Iniciação à Docência (PIBID), Programa de Residência Pedagógica e o Programa de Educação Tutorial (PET). O evento permitiu abranger os conhecimentos, argumentar e analisar a formação e prática dos professores. A semana foi composta por diversas palestras, mesas redondas, minicursos e oficinas, que ocorreram entre os dias 16/08/2021 e 20/08/2021 e os alunos puderam selecionar de quais atividades desejavam participar. A programação contou com abrangentes temas e homenagem ao Educador e Filósofo Paulo Freire.

Na segunda semana do semestre letivo, iniciaram-se os encontros síncronos com os professores da disciplina Laboratório de Ensino e Aprendizagem de Matemática I (LEAMAT I) que apresenta duas linhas de pesquisa: Álgebra e Geometria. Os encontros síncronos estão programados para ocorrerem às quartas-feiras (Álgebra) e quintas-feiras (Geometria).

Essa primeira semana de encontro síncrono foi para explicar o componente curricular, apresentar as linhas de pesquisas, esclarecer o desenvolvimento, organização do componente e dúvidas. No dia 25/08, quarta-feira, ocorreu o primeiro encontro, em que os professores orientadores se apresentaram, explicando que esse componente curricular é essencial para consolidar o conhecimento pedagógico com o conteúdo, caracterizado por ser o pensamento sobre a Educação Matemática, que é de suma importância. Também foram apresentados aos alunos slides com os objetivos do LEAMAT e iniciado um entendimento sobre a preocupação da Álgebra em saber se aluno desenvolveu o pensamento algébrico para uma questão e não uma preocupação focada em somente resolver tal questão corretamente. Foi esclarecido que por se tratar de ensino remoto com aulas síncronas e assíncronas, devido à pandemia da Covid-19, o LEAMAT I foi repensado para esse momento e que a metodologia utilizada será a sala de aula invertida buscando maior aproveitamento do tempo síncrono e assíncrono, com realizações de leituras de artigos e fichamentos dos mesmos.

No dia 26/08, quinta-feira, os professores continuaram a apresentação e esclarecimentos do componente LEAMAT I e trouxeram duas alunas que já concluíram a pesquisa do LEAMAT. As alunas prepararam uma apresentação em *slides* relatando suas trajetórias e experiências durante a disciplina, além de mostrarem o trabalho abordando como foi a escolha do tema, a justificativa desse, as aplicações, as correções que tiveram que realizar, o apoio e incentivo que receberam dos professores e a escrita dos relatórios. Foi muito significativo escutar alunas que passaram por esse processo e já o concluíram. Os professores finalizaram o encontro explicando como realizar um fichamento e qual a sua importância para nossa trajetória no LEAMAT I e nossa formação docente, além de esclarecerem sobre os sábados letivos.

No dia 02 de setembro de 2021, o momento síncrono iniciou-se com a discussão sobre o texto *O ensino de Geometria no Brasil: uma abordagem histórica* (ANGELO; SANTOS; BARBOSA, 2020) que relata a história da geometria, destacando o seu abandono que percorreu durante muito tempo e sua evolução, sendo de suma importância conhecer e compreender a história da matemática.

No dia 09 de setembro de 2021 houveram considerações, que retrataram a necessidade e relevância dos alunos participarem de eventos, com o objetivo de abranger os conhecimentos e experiências, com isso foi demonstrado que a leitura de livros e artigos são essenciais na nossa formação profissional enquanto futuros educadores. Após iniciou-se a discussão da turma sobre o artigo *Ensino de Geometria: Rumos da pesquisa 1991-2011* (SENA; DORNELES, 2013), que evidencia a importância da Geometria no cenário brasileiro, estabelecendo ideias de pesquisas relacionado a Educação Matemática, a fim de possibilitar entendimento amplo sobre o contexto. A partir daí foi esclarecido que durante um resumo, torna-se fundamental a presença da contextualização, objetivo, metodologia e resultados referentes aos textos.

No dia 16 de setembro de 2021 foi realizada a discussão do artigo *Porque* não ensinar Geometria (LORENZATO,1995), autor muito importante e citado em muitas aulas. O artigo aborda com muita contundência a ausência ou pouco destaque para o ensino da geometria no Brasil e apresenta como fatores principais para essa questão o pouco conhecimento em geometria dos professores e a falta de destaque da geometria nos livros didáticos.

Assim, a questão da renovação ou ressurreição do ensino da Geometria não é infelizmente apenas uma questão didático-pedagógica: é também social-epistemológica, envolvendo Universidades, Secretarias de Educação e Editoras ... e é, ainda, uma questão político-administrativa, pois. o professor exerce uma função de vital importância nesse processo de transformação e, com a atual remuneração de 01 (um) real a hora-aula (ou 0.85 de dólar nov-94), ele não terá muitas condições para mudanças, a não ser de profissão. (LORENZATO, 1995, p. 5).

O artigo aborda ainda que o avanço no ensino da geometria é complexo e envolve muitos atores, mas que nos últimos anos são vistos avanços no ensino da Geometria, além da possibilidade de uma revolução com o uso do computador. Outro ponto que pode nos trazer um certo alento é que o artigo é anterior à publicação dos PCN's e do BNCC e esses documentos trazem ações no sentido de uma maior ênfase no ensino da geometria. Durante a aula foi aberto um espaço para conversar sobre o texto, onde os alunos expressaram os destaques e dúvidas que perceberam durante o fichamento do artigo, ressaltando a dificuldade no ensino de Geometria e a importância do aprendizado de construções geométricas.

No dia 23 de setembro de 2021, a aula teve início com a discussão sobre a leitura do capítulo do livro *Aprendendo e ensinando geometria*. Esse falava sobre o modelo Van Hiele do desenvolvimento ao pensamento geométrico, assim foi enfatizado os principais objetivos e sua importância, além dos níveis desse processo com as contribuições dos alunos. Houve também alguns exemplos de recursos pedagógicos que contribuem de forma significativa no processo de aprendizagem do educando. O modelo de Van Hiele descreve em suas experiências educacionais vários níveis, que se inicia pelo nível básico (visualização), que só ocorre o reconhecimento de suas formas, mas não distinguem as suas propriedades. Ao avançar os níveis: análise, dedução informal, dedução e rigor todos os conceitos serão aprimorados.

No dia 30 de setembro de 2021, ocorreu a apresentação dos seminários sobre os Parâmetros Curriculares Nacionais (PCN's) e a Base Nacional Comum Curricular (BNCC), no ensino fundamental e médio. O primeiro grupo apresentou sobre os PCN's, com isso foi apresentado sua definição, objetivos, organização e divisão, além de mostrar a necessidade de oferecer uma educação de qualidade. O segundo grupo falou sobre a BNCC, assim foi apresentado um pouco de sua história, seus objetivos, a relação com o Exame Nacional do Ensino Médio, suas competências gerais e específicas.

No dia 07 de outubro de 2021, os grupos divididos começaram a falar sobre as possibilidades de temas para trabalho, em que foram esclarecidas o segmento do componente curricular e a importância da realização de leituras pertinentes à temática escolhida para ampliação e melhor conhecimento desse.

No dia 14 de outubro de 2021 foi discutida a primeira proposta de tema que tinha como pauta a ampliação e redução de figuras por duas abordagens geométricas: homotetia e malha quadriculada, além da leitura da Base Comum Nacional Curricular (BNCC) para verificar sua abordagem e sequência durante o Ensino Fundamental II. A professora nos disponibilizou materiais para leitura sobre o assunto, que foram discutidos ainda durante a aula, o que foi muito importante para ampliar as ideias de abordagem do tema em uma sequência didática.

Na décima semana, no dia 21 de outubro de 2021 a aula teve início com a discussão do grupo em relação aos pontos principais do trabalho, assim foi definido o público alvo, o conteúdo e a iniciação da argumentação para a escolha do tema. Logo após a professora ponderou alguns tópicos que devemos levar em consideração e alguns pontos que devem ser melhorados, propondo algumas ideias de como devemos proceder de acordo com o tema escolhido, além de enfatizar a importância da BNCC e dos PCN's ao longo da elaboração do trabalho, a fim de fundamentá-lo.

No dia 28 de outubro foi realizada a redefinição do tema proposto inicialmente. Excluiu-se a malha quadriculada da metodologia, deixando apenas a homotetia, de modo a otimizar a sequência didática do projeto. Devido a mudança do tema foi necessário debater e alterar também o objetivo geral.

No dia 4 de novembro, semana 12, a aula iniciou com uma conversa sobre o cronograma das atividades do LEAMAT I, no qual a professora detalhou cada etapa do trabalho a ser apresentada para os colegas da turma e professores. Logo após o diálogo inicial, cada grupo foi direcionado para sua sala virtual, com objetivo de conversar mais claramente sobre cada temática com a professora, apresentando a motivação, público alvo, ferramentas utilizadas, tema e justificativa para a escolha do tema.

No dia 11 de novembro, semana 13, a professora logo nos direcionou às salas dos grupos e informou que visitaria cada grupo para avaliar e ajudar no desenvolvimento da justificativa e também a apresentação do trabalho. Na sala do grupo fizemos alguns ajustes no texto da justificativa e das referências, logo que a

professora ingressou na sala, fez uma leitura da justificativa em conjunto com o grupo e ponderou sobre alguns detalhes. Solicitou o envio antes da próxima aula do arquivo da apresentação para uma análise prévia.

No dia 18 de novembro, semana 14, a professora logo nos direcionou às salas dos grupos em que foram realizadas modificações no arquivo da apresentação e do relatório, conforme observações da orientadora. Os arquivos foram enviados para nova análise do orientador no dia 20 de novembro.

No dia 25 de novembro, semana 15, a orientadora nos encaminhou às salas dos grupos, lá repassamos a apresentação e a orientadora fez algumas ponderações com relação ao texto da motivação, sugeriu a incluir a competência geral da BNCC que aborda tecnologias digitais e fez algumas observações de formatação.

1.2 Elaboração da sequência didática

1.2.1 Tema

Explorando a homotetia por meio do Geogebra.

1.2.2 Motivação

A ideia inicial do tema surgiu após análise das sugestões apresentadas, pela professora/orientadora da linha de pesquisa Geometria, considerando a ampliação e redução de figuras em malha quadriculada. Com a evolução das discussões e debates, foi decidido substituir a malha quadriculada por homotetia, uma vez que o grupo já possui conhecimento do assunto e que dessa forma seria oferecido um conteúdo mais abrangente aos alunos.

A utilização de recursos tecnológicos na sequência didática para o ensino da homotetia e por consequência da geometria, torna o ensino mais construtivo e dinâmico, gerando curiosidade e interesse nos alunos.

1.2.3 Justificativa

Considerando a área da Matemática na Base Nacional Comum Curricular (BNCC) na unidade temática de Geometria, o sexto ano apresenta como objeto de conhecimento a "construção de figuras semelhantes: ampliação e redução de figuras planas [...]" (BRASIL, 2018, p. 302) e o sétimo ano as "transformações

Geométricas de polígonos no plano cartesiano: multiplicação das coordenadas por um número inteiro e obtenção de simétricos em relação aos eixos e a origem." (BRASIL, 2018, p. 308).

Além dos objetos de conhecimento, torna-se válido dar destaque às competências que são descritas na BNCC, definidas como:

a mobilização de conhecimentos (conceitos e procedimentos), habilidades (práticas, cognitivas e socioemocionais), atitudes e valores para resolver demandas complexas da vida cotidiana, do pleno exercício da cidadania e do mundo do trabalho. (BRASIL, 2018, p. 8).

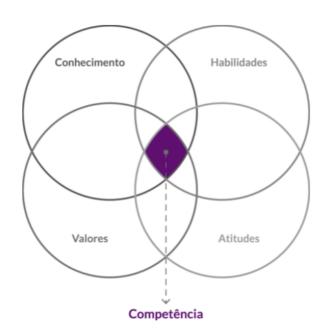


Figura 1 - Conceito competência BNCC

Fonte: Glossário Digital BNCC

A BNCC tem previstas 10 competências gerais, ilustradas na figura 2, que estão presentes em todos os segmentos da Educação Básica. Estas competências estão relacionadas a uma série de habilidades e conteúdos que são abordados ao longo dos ciclos de ensino. A competência geral 5: **Cultura Digital**, reforça a necessidade de conhecer e usar bem a tecnologia no ensino, fundamental para:

Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva. (BRASIL, 2018, p. 9).

Argumentação Autoconhecimento Conhecimento e autocuidado Responsabilidade Cultura digital e cidadania Pensamento Empatia e científico, crítico e colaboração criativo Trabalho e projeto de vida Comunicação Repertório cultural

Figura 2 - Competências Gerais BNCC

Fonte: Glossário Digital BNCC

A abordagem dos objetos de conhecimento pode se dar de diversas maneiras, em que é fundamental que o professor esteja disposto e aberto a novos saberes, visando o aprendizado do aluno. Com isso, deve-se considerar o uso da tecnologia, que cada vez mais está inserida nas áreas do conhecimento, modificando-as. A tecnologia está presente, inclusive, na Educação Matemática, aliás:

Toda atividade humana é mediada por alguma tecnologia. Sabemos que a tecnologia por si só não muda a natureza da escola, tampouco, da formação profissional. É preciso que os docentes tenham vontade própria e desenvolvam conhecimento crítico para incorporá-las em seu cotidiano. (IZAR apud BAIRRAL, 2014, p. 38).

O uso tecnológico no ambiente educacional proporciona um maior interesse ao aprendizado. Na Educação Matemática, a utilização de recursos informáticos para ensino dos conceitos geométricos tornou esse mais dinâmico e desafiador, em que é de suma importância que a atividade proposta tenha um objetivo voltado à compreensão das propriedades e características geométricas, considerando a visualização do aluno (IZAR, 2014, p. 7).

A partir desses objetos de conhecimento, em que ambos podem ser trabalhados com a utilização de figuras, os unificamos no tema "explorando a

homotetia por meio do Geogebra", para aplicação no 7.º ano do Ensino Fundamental II.

Por mais que um dos objetos de conhecimento seja para o sexto ano, a BNCC mantém uma continuação do seu processo de ensino/aprendizagem, integrando os conteúdos. Logo, realizar esse resgate no sétimo ano é uma forma de integrar e progredir com a aprendizagem, já que a cada ano escolar os conteúdos se ampliam necessitando desse retorno ao aprendizado anterior já consolidado (SILVA; FELICETTI, 2014).

A abordagem da homotetia por meio dos recursos tecnológicos, com a utilização de figuras planas já conhecidas pelos alunos, facilita a apresentação de alguns conceitos geométricos e também é base para a construção de conceitos como escalas gráficas e projeções cônicas, que serão abordados em anos posteriores do ensino matemático.

A Homotetia é um tipo de transformação geométrica que altera o tamanho de uma figura, mas mantêm as características principais como a forma e os ângulos, abrangendo o paralelismo e a razão entre segmentos correspondentes, permitindo proporcionar uma noção de congruência e semelhança, sendo que a partir dela, todas as outras semelhanças podem ser construídas. Essa relação pode ser explicada através da derivação grega da palavra Homotetia, em que homós significa similar, e tetia, posição, isto é, as figuras homotéticas são colocadas a uma distância igual a "algo". Máquinas copiadoras que fazem ampliações ou reduções geralmente utilizam a Homotetia como princípio em seu funcionamento. (REIS, 2019, p. 141).

O mundo se torna cada vez mais visual e é de suma importância que os alunos sejam preparados para viver nessa sociedade, o tema ampliação e redução de figuras está presente na elaboração de mapas, plantas de construções e maquetes por exemplo.

Assim, a visualização e a leitura de informações gráficas em Matemática são aspectos importantes, pois auxiliam a compreensão de conceitos e o desenvolvimento de capacidades de expressão gráficas. A disponibilidade de modernos recursos para produzir imagens impõe a necessidade de atualização das imagens matemáticas, de acordo com as tendências tecnológicas e artísticas, incorporando a cor, os gráficos, a fotografia, assim como a importância de ensinar os alunos a fazer uso desses recursos. (BRASIL, 1998, p. 46).

A utilização da tecnologia no ensino da Matemática torna-se essencial considerando o contexto tecnológico que o mundo está inserido. Segundo Wolff e Silva (2013) esse uso auxilia no processo de aprendizagem, pois permite que o aluno construa e/ou manipule, sendo possível realizar comparações,

generalizações e análises, propondo uma experiência mais dinâmica e colaborativa, além de confrontar teoria e prática. Com isso, a BNCC estabelece como competência específica da matemática a necessidade de desenvolver a habilidade tecnológica no contexto matemático, afirmando que: "Utilizar processos e ferramentas matemáticas, inclusive tecnologias digitais disponíveis, para modelar e resolver problemas cotidianos, sociais e de outras áreas de conhecimento, validando estratégias e resultados" (BRASIL, 2018, p. 267).

São diversos os *softwares* de Geometria dinâmica utilizados como recursos na sala de aula, visando facilitar e estimular o aprendizado do educando, em que "o uso de *softwares* na educação pode auxiliar na compreensão do conteúdo e contribuir no processo de aprendizagem." (WOLFF; SILVA, 2013). Entre eles, encontra-se o Geogebra que "é utilizado como recurso didático para o ensino e aprendizado de Homotetia, por conter em sua estrutura a opção de fazer a transformação geométrica, utilizando os polígonos regulares" (REIS, 2019, p. 67).

O Geogebra é um *software* de matemática dinâmica que tem ampla aplicabilidade, se estendendo em todos os níveis de ensino. A combinação dos diversos conceitos na sua interface digital inclui a Geometria, Álgebra e cálculo, tornando-o mais dinâmico. Sua utilização estimula a investigação e permite realizar construções geométricas. (WOLFF; SILVA, 2013).

1.2.4 Objetivo Geral

Compreender o conceito de homotetia direta por meio da ampliação e redução de figuras planas no Geogebra.

1.2.5 Público Alvo

Alunos do 7.º ano.

2 RELATÓRIO DO LEAMAT II

2.1 Atividades desenvolvidas

No início do semestre 2021.2, no dia 08 de fevereiro de 2022, o orientador reuniu todos os discentes da disciplina LEAMAT II para explicar que os encontros síncronos a partir dali, ocorreriam nas salas virtuais dos grupos com o objetivo de discutir e elaborar a aplicação da sequência didática. Também foi explicado que a sequência didática será aplicada para todos os discentes e para o orientador e terá duração equivalente a dois tempos de aula de 50 minutos cada. No dia da aplicação o grupo deverá utilizar 1 hora e 30 minutos e os outros 20 minutos serão destinados a contribuições dos outros discentes e do orientador de modo a apontar dúvidas ou sugestões para possíveis melhorias do trabalho.

Entre os dias 10 de fevereiro e 26 de abril de 2022 os encontros foram destinados à elaboração e desenvolvimento da sequência didática junto ao orientador. A cada semana era debatida a sequência didática em elaboração e distribuídas tarefas para cada integrante, o que foi levando a avanços na elaboração da sequência didática, em todos os encontros o orientador sempre trazia sugestões e apontamentos de modo a colaborar, seja trazendo questionamentos e apontamentos ou disponibilizando materiais para ajudar na construção.

A partir do dia 26 de abril de 2022 as aulas foram destinadas a aplicação da sequência didática na turma do LEAMAT II, com intuito de testá-las e aprimorá-las conforme os alunos e professores fossem dando sugestões. No dia 12 de maio de 2022 aconteceu a última aplicação e a partir disso as aulas foram destinadas a análise das contribuições e elaboração dos relatórios

2.2 Elaboração da sequência didática

2.2.1 Planejamento da sequência didática

A sequência didática será pautada no tema "Explorando a homotetia por meio do Geogebra" com aplicação para o sétimo ano do Ensino Fundamental II.

A homotetia é uma temática que pode ser abordada com uma maior frequência no ambiente escolar de ensino básico, tendo nas tecnologias digitais um grande aliado na inserção desse tema. O Geogebra se apresenta como um

excelente recurso tecnológico auxiliando no processo de aprendizagem do educando.

A sequência didática desenvolvida será dividida em três etapas. A primeira etapa consiste em estimular a observação de uma transformação homotética de modo a levantar questionamentos sobre o tema e promover curiosidade e dúvidas nos alunos. A segunda etapa será pautada em apresentar o embasamento teórico onde estão colocadas as definições formais sobre o assunto. A terceira e última etapa apresentará a resolução de exercícios de modo a contribuir para a fixação dos conteúdos apresentados e também promover debates com a resolução.

Será desenvolvida uma apostila ilustrada nas figuras 3 e 4, que traz todos os conteúdos que serão apresentados. Essa apostila será pensada de modo que os discentes não tenham preocupação em copiar os conceitos no momento da apresentação.

IFF- Instituto Federal Fluminense Campus Campos Centro
Curso: Licenciatura em Matemática
Componente Curricular: LEAMAT II
Professor: Leandro Sopeletto Carreiro
Alunos: Angra Alvarenga,Anna Luísa Pessanha,Lucas Oliveira, Sávio
Figueiredo e Thalita de Oliveira.

EXPLORANDO A HOMOTETIA POR MEIO DO GEOGEBRA

O QUE É HOMOTETIA?

Você sabe o que é homotetia? Podemos descobrir mais sobre a homotetia utilizando o material disponível no software no link abaixo. Ao abrir o

Figura 3 - Ilustração da Apostila

Figura 4 - Ilustração da Apostila

> Razão de Homotetia: A razão de homotetia indica a relação entre as distâncias que vão do centro de homotetia até os pontos correspondentes (SÁ, 2011, p.33).

A homotetia pode ser direta ou inversa:

- > Homotetia direta: O centro de homotetia é exterior ao segmento que une os pontos e a razão é positiva, ou seja, maior que zero. (BENTO, 2010).
- > Homotetia inversa: O centro de homotetia é interior ao segmento que une os pontos e a razão é negativa, ou seja, menor que zero. (BENTO, 2010).

Na figura 5 podemos visualizar casos de homotetia direta e inversa:

FIGURA 5 - HOMOTETIA INVERSA E DIRETA

Fonte: Elaboração Própria

Na primeira etapa será disponibilizada a apostila supracitada para os alunos e iniciada a apresentação da sequência por meio de slides. Será questionado aos educandos o que é homotetia segundo eles, apresentando em seguida um link do Geogebra (https://www.geogebra.org/m/phavjs8m) que dá acesso a uma transformação homotética, ilustrada na figura 5. Os alunos serão orientados a movimentar o controle deslizante K presente na página disposta e esses devem observar as transformações ocorridas durante a movimentação.

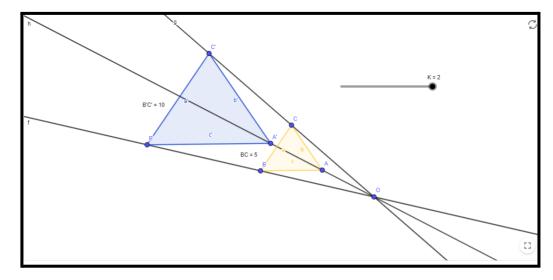


Figura 5 - Transformação Homotética

Em seguida será liberado um link do *Google Forms* (https://docs.google.com/forms/d/e/1FAlpQLSf-XiB_wWpggMVV2hG-6JkwYqnbk1 https://docs.google.com/forms/d/e/1FAlpQLSf-XiB_wWpggMVV2hG-6JkwYqnbk1 https://docs.google.com/forms/d/e/1FAlpQLSf-XiB_wWpggMVV2hG-6JkwYqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wWpggMVV2hG-6JkwYqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wWpggMVV2hG-6JkwYqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggMVV2hG-6JkwYqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6Jkwyqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6Jkwyqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6Jkwyqnbk1 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6 https://docs.google.com/forms/d/e/1FalpQLSf-XiB_wpggmvv2hg-6 https://do

Figura 6 - Formulário Google Explorando a homotetia por meio do geogebra. Não feche essa aba do formulário, pois ele será utilizado durante toda aula como meio saviofig@gmail.com Alternar conta *Obrigatório E-mail * Oual o seu nome? * Sua resposta O que você observou durante a movimentação do controle deslizante no Geogebra. Sua resposta Retorne a sala de aula no google meet. Próxima Limpar formulário ca envie senhas pelo Formulários Googl Este conteúdo não foi criado nem aprovado pelo Google. <u>Denunciar abuso</u> - <u>Termos de Serviço</u> - <u>Política de</u> <u>Privacidade</u>

Fonte: Elaboração Própria

Essa avaliação está dividida em duas seções e a primeira deve ser respondida logo após a observação do *applet* do *Geogebra*. O aluno deverá inserir seu e-mail, nome e relatar o que foi observado durante a manipulação apresentada por meio do *Geogebra*. O objetivo dessa etapa inicial é fazer uma reflexão sobre os conhecimentos já existentes e/ou fomentar a curiosidade sobre o tema.

Ao terminar de responder a primeira seção do *Google Forms*, o aluno deverá retornar à sala de aula no *Google Meet* e poderá relatar o que respondeu na questão relativa ao que foi observado ao movimentar o controle deslizante no Geogebra. A partir das respostas apresentadas, será construído um conceito inicial de homotetia, iniciando-se a segunda etapa.

Na segunda etapa, além da homotetia, serão evidenciadas alguns conceitos, elementos e definições tais como: singularidade de semelhança e homotetia, os principais elementos da homotetia (centro de homotetia e razão de

homotetia), distinção de homotetia inversa e direta e características da homotetia (vértices, lados, paralelismo e ângulos). Além disso, será realizada uma breve apresentação sobre o software Geogebra, destacando suas principais funcionalidades.

Nessa mesma etapa será apresentado (figura 7) uma construção homotética confeccionada pelo grupo, mostrando como realizar a homotetia de forma manual, utilizando régua, compasso e lápis.

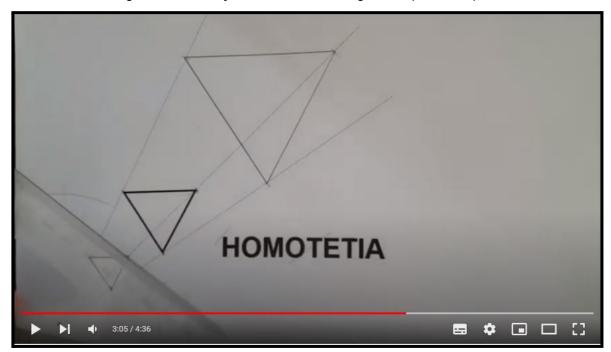
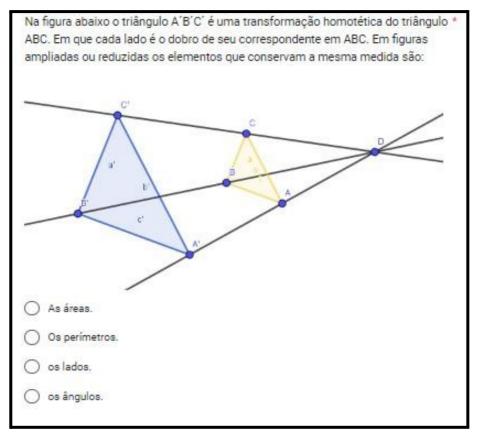


Figura 7 - Construção homotética com régua, compasso e lápis


Fonte: https://www.youtube.com/watch?v=EUmUknymcvY

Em seguida, deverá ser reapresentada a definição de homotetia, só que dessa vez abordando os demais elementos citados durante a apresentação, ou seja, uma definição mais ampla do que a evidenciada inicialmente, visto que os alunos desenvolverão conhecimentos mais específicos sobre o assunto.

Para finalizar a segunda etapa da sequência didática deverá ser explicado e mostrado aos alunos como realizar a transformação homotética utilizando o recurso tecnológico do Geogebra.

Na terceira etapa, os alunos deverão retornar ao *Google Forms* para responder a segunda seção do formulário que irá conter 4 questões de múltipla escolha referentes ao conteúdo. Essas questões estão ilustradas nas figuras 8, 9,10 e 11.

Figura 8 - Questão 1 Google Forms

Fonte: Elaboração Própria

Figura 9 - Questão 2 Google Forms

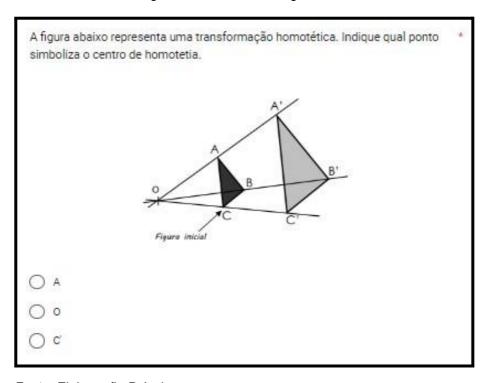
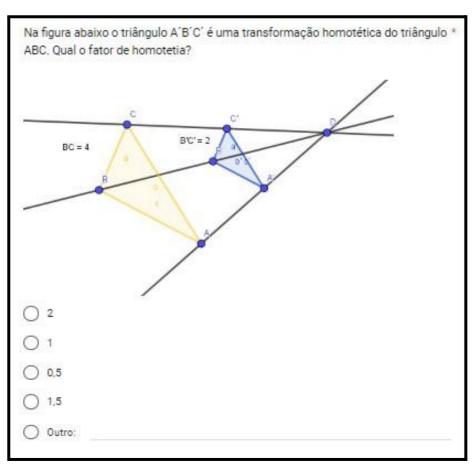
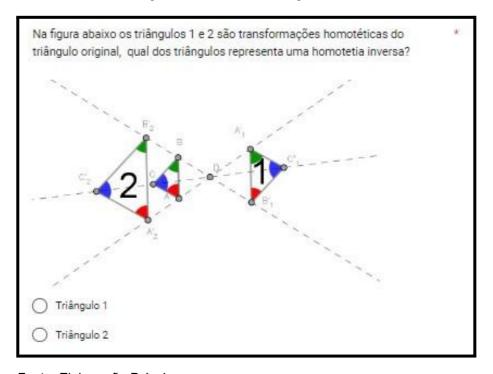




Figura 10 - Questão 3 Google Forms

Fonte: Elaboração Própria

Figura 11 - Questão 4 Google Forms

Todas as questões caracterizam-se por uma abordagem-direta com o tema e têm como objetivo a fixação dos conceitos apresentados. As possíveis dúvidas poderão ser sanadas durante a correção junto aos alunos ao final da aula.

2.2.2 Experimentação da sequência didática

No dia 05 de maio de 2022 foi realizada a apresentação da sequência didática da linha de pesquisa da Geometria. A aplicação da sequência didática foi feita de modo remoto com os licenciandos matriculados no componente LEAMAT II. Houve uma excelente participação dos discentes que colaboraram bastante com as atividades propostas e também levantaram questionamentos que foram fundamentais para o desenvolvimento e melhoria da sequência didática.

A sequência didática ocorreu conforme planejado sendo realizada de forma remota via *Google Meet* iniciando com a distribuição das apostilas via *link* e *Qr Code*. Em seguida, foi utilizado uma aplicação do *Geogebra* e realizadas manipulações pelo grupo. A ideia inicial em uma aula presencial é que os próprios alunos façam essa manipulação, porém devido a excepcionalidade da aplicação ser remota foi feita apenas pelos apresentadores. Posteriormente foi disponibilizado o acesso ao formulário que trouxe um questionamento sobre o que foi observado durante a manipulação da aplicação do Geogebra.

Logo após foi aberto um espaço para construção coletiva de um conceito inicial, havendo bastante interação entre os alunos. A seguir foi realizada a apresentação com os conceitos formais e alguns detalhes necessários para compreensão do conteúdo.

Para finalizar foi disponibilizada a segunda seção do questionário onde foram apresentadas quatro questões de múltipla escolha e estipulado um tempo de 20 minutos para os discentes resolverem. Por fim, foi feita a correção juntamente com a turma, promovendo comentários e sanando dúvidas em todas as questões. A atividade acabou um pouco antes do tempo disponibilizado, em torno de 20 minutos.

O licenciando 1 questionou se os alunos do 7° ano já teriam estudado os conteúdos de semelhanças de figuras planas e proporcionalidade. Podendo haver alunos que não têm ideia tão clara sobre o assunto. O professor orientador salientou que devemos estar atentos à BNCC e que os assuntos não precisam estar necessariamente dentro do âmbito da Geometria.

O professor orientador sugeriu que fosse acrescentado no trabalho mais exercícios referente a temática abordada, explorando os tópicos de perímetro e área a fim de ter um melhor aproveitamento do tempo destinado a aplicação da sequência didática de 90 minutos. Considerando que ao aplicar a sequência didática em uma turma regular o tempo ocupado seria maior do que o obtido na experimentação devido ao conhecimento referente a uma turma de 7º ano, os tópicos sugeridos seriam ideais para outra sequência de continuação do conteúdo abordado.

No intuito que o slide 21 (figura 12) apresentasse informações mais geométricas e claras para os alunos, o professor sugeriu que fossem realizadas algumas alterações (figura 13).

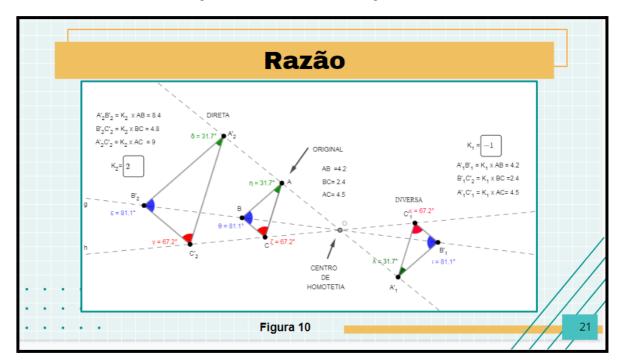


Figura 12 - Slide Razão com Algebrismo

Razão $K_2 = 2$ $K_2 = 2$ $K_2 = A_2'B_2'$ $K_2 = A_2'B_2'$ Figura 10

Figura 13 - Slide Razão mais Geométrico

Fonte: Elaboração Própria

Durante a sequência, alguns alunos mostraram-se curiosos quanto a exemplos cotidianos que representassem a homotetia. Com isso foi sugerido que durante a apresentação, fossem pontuadas transformações homotéticas cotidianas, como por exemplo, o processo de fotocópia, ampliação e redução da máquina de xerox.

3 RELATÓRIO DO LEAMAT III

3.1 Atividades desenvolvidas

Iniciou-se as primeiras semanas do componente curricular LEAMAT III de forma presencial com as análises propostas no relatório anterior e realizando as devidas correções acatadas pelo grupo. Em sequência, foram realizadas as escritas do e-book e o relatório final.

3.2 Elaboração da sequência didática

O grupo decidiu abordar, na linha de pesquisa de Geometria, como tema da sequência didática "Explorando a homotetia por meio do Geogebra" com aplicação para o sétimo ano do Ensino Fundamental II. Entendendo que a homotetia é uma temática que pode ser mais abordada no ambiente escolar, tendo nas tecnologias digitais um grande aliado para a sua inserção. Assim, o GeoGebra se apresenta como um excelente recurso tecnológico, auxiliando no processo de aprendizagem do educando.

O tema foi distribuído e organizado na sequência didática durante o estágio de planejamento que ocorreu no componente curricular do LEAMAT II. Após esse, a temática foi elaborada para sua aplicação feita de modo remoto com os licenciandos matriculados no componente curricular. Houve uma excelente participação dos discentes que colaboraram bastante com as atividades propostas e também levantaram questionamentos e sugestões que foram fundamentais para o desenvolvimento e melhoria da sequência didática. Com isso, o grupo chegou na versão final que será apresentada.

3.2.1 Versão final da sequência didática

A sequência didática desenvolvida será dividida em três etapas. A primeira etapa consiste em estimular a observação da movimentação da figura no GeoGebra, de modo a levantar questionamentos sobre o tema e promover curiosidade e dúvidas nos alunos. A segunda etapa será pautada em apresentar o embasamento teórico onde estão colocadas as definições formais sobre o assunto. A terceira e última etapa apresentará a resolução de exercícios de modo

a contribuir para a fixação dos conteúdos apresentados e também promover debates com a resolução.

A apostila ilustrada nas figuras 3 e 4, que traz todos os conteúdos que serão apresentados, é pensada de modo que os discentes não tenham preocupação em copiar os conceitos no momento da apresentação.

IFF- Instituto Federal Fluminense Campus Campos Centro
Curso: Licenciatura em Matemática
Componente Curricular: LEAMAT II
Professor: Leandro Sopeletto Carreiro
Alunos: Angra Alvarenga,Anna Luísa Pessanha,Lucas Oliveira, Sávio
Figueiredo e Thalita de Oliveira.

EXPLORANDO A HOMOTETIA POR MEIO DO GEOGEBRA

O QUE É HOMOTETIA?

Você sabe o que é homotetia? Podemos descobrir mais sobre a homotetia utilizando o material disponível no software no link abaixo. Ao abrir o

Figura 14 - Ilustração Apostila

Figura 15 - Ilustração Apostila

Razão de Homotetia: A razão de homotetia indica a relação entre as distâncias que vão do centro de homotetia até os pontos correspondentes (SÁ, 2011, p.33).
 A homotetia pode ser direta ou inversa:
 Homotetia direta: O centro de homotetia é exterior ao segmento que une os pontos e a razão é positiva, ou seja, maior que zero. (BENTO, 2010).
 Homotetia inversa: O centro de homotetia é interior ao segmento que une os pontos e a razão é negativa, ou seja, menor que zero. (BENTO, 2010).
 Na figura 5 podemos visualizar casos de homotetia direta e inversa:
 FIGURA 5 - HOMOTETIA INVERSA E DIRETA

Fonte: Elaboração Própria

Etapa 1 - Introdução da sequência

Na primeira etapa será disponibilizada a apostila supracitada para os alunos e iniciará uma apresentação dos conceitos e exemplos, presentes na apostila, por meio de slides. Os educandos serão questionados sobre o que é homotetia para que respondam com suas próprias palavras, apresentando em seguida um link do Geogebra (https://www.geogebra.org/m/phavjs8m) que dá acesso a uma transformação homotética, ilustrada na figura 5. Os alunos serão orientados a movimentar o controle deslizante K presente na página disposta e esses devem observar as transformações ocorridas durante a movimentação.

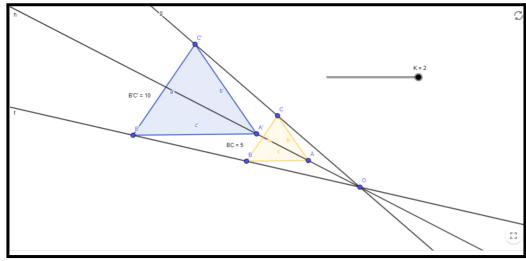


Figura 16 - Transformação Homotética

Após liberado link do Google será um Forms (https://docs.google.com/forms/d/e/1FAlpQLSf-XiB_wWpggMVV2hG-6JkwYqnbk1 MR3UwzNDh2E6zuhP56g/viewform) ilustrado na figura 6, que servirá como meio avaliativo para os discentes.

Explorando a homotetia por meio do geogebra. Não feche essa aba do formulário, pois ele será utilizado durante toda aula como meio saviofig@gmail.com Alternar conta *Obrigatório E-mail * Seu e-mail Qual o seu nome? * O que você observou durante a movimentação do controle deslizante no Sua resposta Retorne a sala de aula no google meet. Limpar formulário nca envie senhas pelo Formulários Google. Este conteúdo não foi criado nem aprovado pelo Google. <u>Denunciar abuso</u> - <u>Termos de Serviço</u> - <u>Política de</u>
Privacidade

Figura 17 - Formulário Google

Fonte: Elaboração Própria

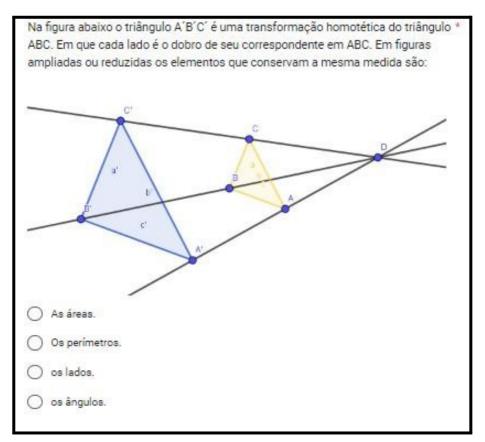
Essa avaliação se divide em dois momentos e o primeiro deve ser respondido logo após a observação do applet do Geogebra. Como isso, o aluno deverá inserir seu e-mail, nome e relatar o que foi observado durante a manipulação apresentada por meio do Geogebra. O objetivo dessa etapa inicial é fazer uma reflexão sobre os conhecimentos já existentes e/ou fomentar a curiosidade sobre o tema.

Ao terminar de responder a primeira seção do Google Forms, o aluno deverá retornar à sala de aula no Google Meet e poderá falar o que ele respondeu no questionário ao ser indagado sobre o que observou durante a movimentação do controle deslizante no Geogebra. A partir das respostas apresentadas, será construído um conceito inicial de homotetia, iniciando-se a segunda etapa.

Etapa 2 - Apresentação dos conceitos

Na segunda etapa, além da homotetia, serão evidenciados alguns conceitos, elementos e definições tais como: singularidade de semelhança e homotetia, os principais elementos da homotetia (centro de homotetia e razão de homotetia), distinção de homotetia inversa e direta e características da homotetia (vértices, lados, paralelismo e ângulos). Além disso, será realizada uma breve apresentação sobre o software Geogebra, destacando suas principais funcionalidades.

Nessa mesma etapa será apresentado um vídeo (https://www.youtube.com/watch?v=EUmUknymcvY), confeccionado pelo grupo, mostrando como realizar a homotetia de forma manual, utilizando régua, compasso e lápis.


Em seguida, deverá ser reapresentada a definição de homotetia, só que dessa vez abordando os demais elementos citados durante a apresentação, ou seja, uma definição mais ampla do que a evidenciada inicialmente, visto que os alunos desenvolverão conhecimentos mais específicos sobre o assunto.

Para finalizar a segunda etapa da sequência didática, deverá ser explicado e mostrado aos alunos como realizar a transformação homotética utilizando o recurso tecnológico do Geogebra.

Etapa 3 - Verificação da aprendizagem

Na terceira etapa, os alunos deverão retornar ao *Google Forms* para responder a segunda seção do formulário que irá conter 4 questões de múltipla escolha referentes ao conteúdo. Essas questões estão ilustradas nas figuras 7,8,9 e 10.

Figura 18 - Questão 1 Google Forms

Fonte: Elaboração Própria

Figura 19 - Questão 2 Google Forms

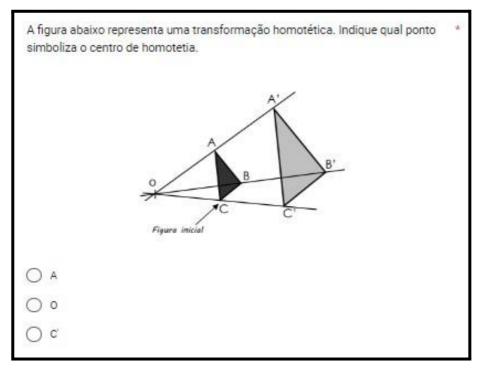
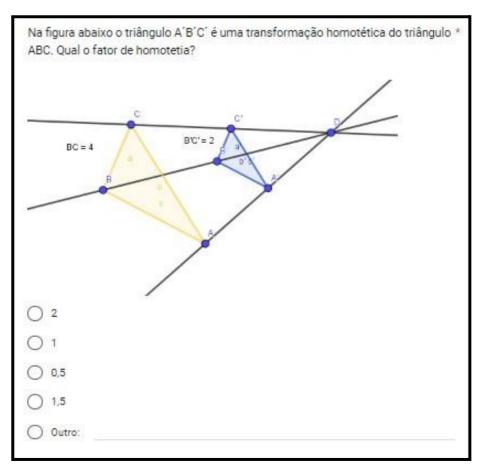
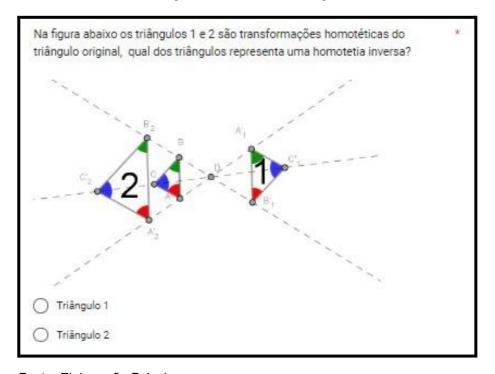




Figura 20 - Questão 3 Google Forms

Fonte: Elaboração Própria

Figura 21 - Questão 4 Google Forms

Todas as questões caracterizam-se por uma abordagem direta com o tema e tem objetivo a fixação dos conceitos apresentados. As possíveis dúvidas poderão ser sanadas durante a correção junto aos alunos que ocorrerá ao final da aula.

4 CONCLUSÃO

A proposta inicial do projeto era trabalhar com a ampliação e redução de figuras em malha quadriculada, mas essa perspectiva sofreu algumas alterações, no intuito de concentrar a temática e permitir um melhor entendimento dessa para o aluno. A aplicação da sequência didática foi formulada para a execução remota, devido ao período pandêmico.

O objetivo da sequência didática é permitir a compreensão sobre o conceito da homotetia direta por meio da ampliação e redução de figuras planas no GeoGebra, com isso foram elaborados materiais didáticos de apoio destinados aos alunos e professores, além de vídeos e links no software de matemática dinâmica, com a finalidade de complementar a temática apresentada. Sendo assim, vale salientar a viabilidade do trabalho ser aplicado presencialmente.

Em consequência do período remoto, a aplicação da sequência didática foi realizada como teste exploratório, destinado a turma do LEAMAT II, com o auxílio da plataforma digital de videoconferência *Google Meet*. Assim, a execução do trabalho foi dividida em três momentos, com objetivo de proporcionar organização, percepção e contribuir no processo de ensino/aprendizagem dos educandos. Desse modo, o teste exploratório realizado atingiu o objetivo proposto.

Dessa maneira, o trabalho poderá ser exercido de forma presencial, sendo necessário realizar algumas modificações e adaptações referente aos slides, materiais de apoio do GeoGebra, na apostila e acrescentar a manipulação de régua e compasso. Os tópicos evidenciados pelos alunos, que incluíram acréscimo de mais exercícios, exploração do perímetro e suas propriedades, além de mais slides com outras características referente a homotetia, possibilitaram uma visualização mais ampla sobre o trabalho desenvolvido. Desse modo, como sugestão para atividades futuras pertencentes ao tema, seria o complemento de definições sobre perímetro, área e exemplos de transformações homotéticas no cotidiano.

O grupo apresentou diversas percepções quanto ao trabalho. Nos pontos positivos destacam-se a ordenação e capricho com a preparação da sequência didática. Os pontos a serem melhorados estão associados a modificação de algumas imagens e alguns tópicos da apostila referente a regra da ABNT.

Por fim, a trajetória vivenciada ao longo do componente curricular foi significante e essencial para nosso desenvolvimento pessoal e profissional enquanto futuros educadores, favorecendo no desenvolvimento cognitivo e pesquisas aprofundadas sobre o conteúdo.

REFERÊNCIAS

ANGELO, Mateus; SANTOS, Maria Flavia; BARBOSA, Renata. O Ensino da Geometria no Brasil: Uma Abordagem Histórica. In: **Anais do XIV Colóquio Internacional "Educação e Contemporaneidade"**. Eixo 14 – Educação e Ensino de Matemática, Ciências Exatas e Ciências da Natureza, 2020. São Cristóvão/SE. ANAIS EDUCON 2020.

BNCC, GLOSSÁRIO DIGITAL. SOMOS Educação I Kroton Educacional, 2019. Disponível em:

http://glossario-digital-bncc-00-c8118adcf4fcd.webflow.io/estrutura-bncc Acesso em: 25 de nov. de 2021.

BRASIL. Ministério da Educação. **Base Nacional Comum Curricular. Ensino Fundamental**. Brasília, 2018.

CROWLEY, Mary L. **O** modelo Van Hiele de desenvolvimento do pensamento geométrico. In: LINDQUIST, Mary Montgomery; SHULTE, Albert P. (organizadores). Aprendendo e Ensinando Geometria. São Paulo: Atual, 1994.

IZAR, Soraya Barcellos. Explorando o conceito de homotetia com alunos do ensino fundamental: uma abordagem com aplicativos dinâmicos inspirada na cultura visual. 2014. 124p. Dissertação (Mestrado em Educação, Contextos Contemporâneos e Demandas Populares). Instituto de Educação/ Instituto Multidisciplinar, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2014. Disponível

em:https://tede.ufrrj.br/jspui/bitstream/jspui/4479/2/2014%20-%20Soraya%20Barcellos%20 Izar.pdf>. Acesso em 09 de nov. de 2021.

LORENZATO, Sergio Apparecido. Porque não ensinar Geometria? **A Educação Matemática em Revista**. Blumenau: SBEM, ano III, n.4, 1995, p.3-13.

REIS, Sara Jamima Carneiro dos. **Tarefas Investigativas na Aprendizagem de Homotetia Utilizando os Materiais de Desenho Geométricos e o Software Geogebra, por Alunos do 9.º Ano de uma Escola da Rede Estadual do Município de Rio Branco, Acre**. 2019. 174p. Dissertação (Mestrado Profissional em Ensino de Ciências e Matemática). Universidade Federal do Acre, Rio Branco, AC. 2019. Disponível em:

http://www2.ufac.br/mpecim/menu/dissertacoes/turmar-2017/dissertacao-sara-jemima-carneiro-dos-reis.pdf. Acesso em 09 de nov. de 2021.

SÁ, SÔNIA. DESENHO 9° ANO - Ensino Fundamental II. COLÉGIO PEDRO II - CAMPUS HUMAITÁ II DEPARTAMENTO DE DESENHO,2020. UESCII, 2011. Disponível em: http://www.cp2.g12.br/blog/humaitaii/files/2020/04/APOSTILA-9-ANO-2_2020.pdf. Acesso em: 27 de mar. 2022.

SENA, Rebeca; DORNELES, Beatriz. Ensino de Geometria: Rumos da Pesquisa (1991-2011). **REVEMAT: Revista Eletrônica de matemática**. Santa Catarina, v.8 n.1, 2013. Disponível em:

https://periodicos.ufsc.br/index.php/revemat/article/view/1981-1322.2013v8n1p138 . Acesso em: 06 set. 2021.

SILVA, Gabriele Bonotto; FELICETTI, Vera Lucia. **Habilidades e competências na prática docente:** perspectivas a partir de situações- problema. Educação Por Escrito, Porto Alegre, v. 5, n. 1, p. 17-29, jan.-jun. 2014. Disponível em: https://revistaseletronicas.pucrs.br/ojs/index.php/porescrito/article/view/14919>. Acesso em 14 nov. 2021.

WOLFF, Maria Eliza; SILVA, Dirceu Pereira da. **O** software geogebra no ensino da matemática. Os desafios da escola pública paranaense na perspectiva do professor PDE, Paraná, v.I, 2013.

Campos	dos Goytacazes (RJ),	de	de 2022.
			

APÊNDICE Material Didático Elaborado

IFF- Instituto Federal Fluminense Campus Campos Centro

Diretoria de Ensino Superior das Licenciaturas

Licenciatura em Matemática

Componente Curricular: LEAMAT II - Linha de Pesquisa: Geometria

Orientador: Prof. Me. Leandro Sopeletto Carreiro

Licenciandos: Angra Alvarenga da Silva, Anna Luisa Pessanha dos Santos,

Lucas Oliveira Amorim, Sávio Figueiredo da Silva e Thalita de Oliveira Lima.

EXPLORANDO A HOMOTETIA POR MEIO DO GEOGEBRA

➤ O QUE É HOMOTETIA?

Você sabe o que é homotetia? Podemos descobrir mais sobre a homotetia utilizando o material disponível no *software* no *link* abaixo. Ao abrir o *link*, encontre o controle deslizante T e o mova para ver o que acontece.

FIGURA 1- QR CODE

https://www.geogebra.org/m/phavjs8m

No *link* disponibilizado acima, ao movimentar o controle deslizante T, o triângulo A'B'C' também se movimenta, realizando uma transformação que é chamada de **transformação homotética**.

O termo homotetia (do grego *homo* (semelhante) + *thétos* (colocado) + ia) indica um tipo de transformação de figuras em figuras semelhantes ampliadas ou reduzidas, semelhantemente dispostas (JORGE, 2002, in IZAR p.117)

No caso ilustrado no *link* acessado, a homotetia foi feita no triângulo, mas esta pode acontecer com outras figuras planas como o quadrado e o retângulo ilustrados nas figuras 2 e 3.

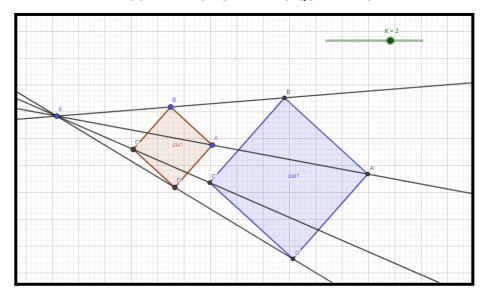


FIGURA 2 - HOMOTETIA NO QUADRADO

Fonte: Elaboração própria

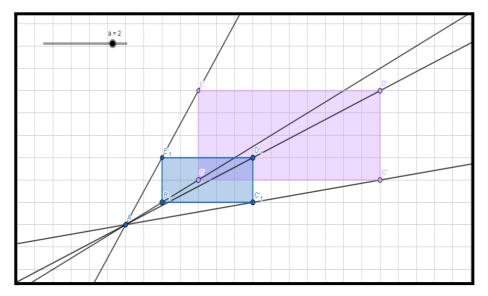


FIGURA 3 - HOMOTETIA NO RETÂNGULO

É importante destacar que a homotetia **NÃO** equivale à figuras semelhantes, pois figuras semelhantes possuem a mesma forma, dimensões proporcionais e não há necessariamente um paralelismo entre os lados. Já, na homotetia, as figuras possuem semelhança e também o paralelismo (SÁ, 2011). Ou seja, o que as diferencia é o paralelismo.

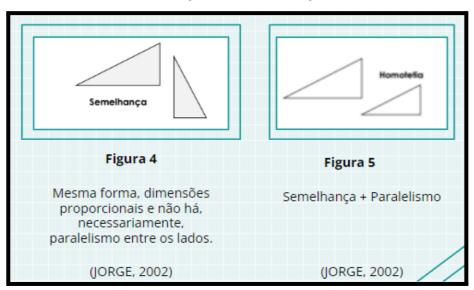


FIGURA 4 - DIFERENÇA DE SEMELHANÇA E HOMOTETIA

Fonte: Elaboração própria

O software que foi acessado no primeiro link é chamado de GeoGebra e ele nos permite visualizar melhor a transformação das figuras homotéticas, visto que "[...] o Geogebra é um **software** de matemática dinâmica que tem ampla aplicabilidade, se estendendo em todos os níveis de ensino. A combinação dos diversos conceitos na sua interface digital inclui a **Geometria**, Álgebra e cálculo, tornando-o mais dinâmico. Sua utilização estimula a investigação e permite realizar construções geométricas" (WOLFF; SILVA, 2013, grifo nosso).

Segundo Lamas e Mendes (2017), quando utilizamos o GeoGebra, temos uma construção interativa de figuras e objetos geométricos, podendo **melhorar a nossa compreensão** com a interação, visualização, percepção dinâmica de propriedades que estão sendo estudados, que nesse caso é a homotetia.

Durante a transformação homotética, diversos elementos são essenciais para que ocorra a homotetia. Entre eles, encontram-se:

- ➤ Centro de Homotetia: O centro de homotetia é um ponto específico que relaciona a posição original e a da figura transformada (IZAR, 2014, p. 38). Este é determinado pela interseção das retas que passam pelos pontos correspondentes (homólogos) de duas figuras semelhantes (SÁ, 2011, p.33).
- ➤ Razão de homotetia: A razão de homotetia indica a relação entre as distâncias que vão do centro de homotetia até os pontos correspondentes (SÁ, 2011, p.33).

A homotetia pode ser direta ou inversa:

- ➤ Homotetia direta: O centro de homotetia é exterior ao segmento que une os pontos e a razão é positiva, ou seja, maior que zero. (BENTO, 2010).
- ➤ Homotetia inversa: O centro de homotetia é interior ao segmento que une os pontos e a razão é negativa, ou seja, menor que zero. (BENTO, 2010).

Na Figura 5, podemos visualizar casos de homotetia direta e inversa:

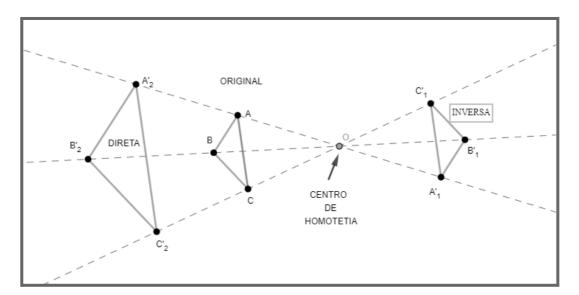


FIGURA 5 - HOMOTETIA INVERSA E DIRETA

Fonte: Elaboração própria

São diversas as características que podem ser observadas durante a transformação homotética. Entre elas, pode-se destacar as características que envolvem:

- ➤ **Vértices:** Pelos vértices passam as semirretas que são traçadas no centro de homotetia (DANTE, 2020);
- ➤ Lados: As medidas de comprimento dos lados correspondentes são proporcionais (DANTE, 2020);
- ➤ **Paralelismo:** O paralelismo entre os segmentos correspondentes faz com que as medidas angulares sejam preservadas (IZAR, 2014, p.38);
- ➤ Ângulos: Dois polígonos homotéticos possuem os ângulos correspondentes congruentes (DANTE, 2020).

Com tudo que aprendemos sobre a transformação homotética, podemos compreender melhor a sua definição: "A homotetia é um tipo de transformação geométrica que altera o tamanho de uma figura, mas mantém as características principais, como a forma e os ângulos, abrangendo o paralelismo e a razão entre segmentos correspondentes, permitindo uma noção de congruência e semelhança, sendo que, a partir dela, todas as outras semelhanças podem ser construídas" (REIS, 2019, p. 141, grifo nosso).

Agora vamos analisar a Figura 6 e observar suas características homotéticas.

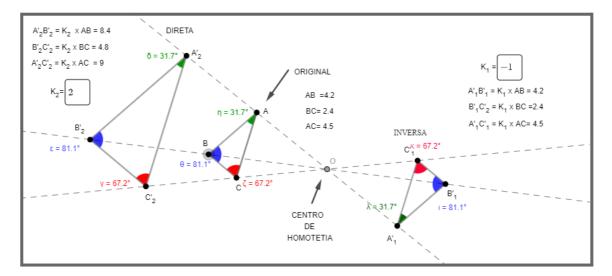


FIGURA 6 - FIGURA HOMOTÉTICA

Link da figura: https://www.geogebra.org/classic/m3psrc2j

➤ Observando o triângulo A'₂B'₂C'₂, vemos que o lado A'₂B'₂ mede **8,4** e, no triângulo original ABC, o lado AB mede **4,2**. Logo a razão de homotetia é definida como:

$$K = \frac{A'_2 B'_2}{AB} = \frac{8.4}{4.2} = 2$$

- ➤ Como K é maior que 1, temos uma ampliação.
- ➤ Imagine um triângulo menor que o original de lado correspondente ao lado c'₀ medindo 2,1. A razão de homotetia seria definida por:

$$K = \frac{A'_2 B'_2}{AB} = \frac{2,1}{4,2} = \frac{1}{2}$$

➤ Como K é menor que 1, temos uma redução.

REFERÊNCIAS

BENTO, H. A. O desenvolvimento do pensamento geométrico com a construção de figuras geométricas planas utilizando o software: GeoGebra. 2010. Dissertação (Mestrado em Ensino de Ciências e Matemática) – Programa de Pós-graduação em Ensino de Ciências e Matemática da Pontifícia Universidade Católica de Minas Gerais, Minas Gerais, 2010.

IZAR, Soraya Barcellos. "Explorando o conceito de Homotetia com alunos do Ensino Fundamental: uma abordagem com aplicativos dinâmicos inspirada na cultura visual." (2014). Disponível em: https://tede.ufrrj.br/jspui/handle/jspui/4479. Acesso em: 14 de mar. 2022.

JORGE, S. Desenho Geométrico Ideias & Imagens. 2ªed, Saraiva, São Paulo. 2002. vols. 1,2,3,4.

REIS, Sara Jamima Carneiro dos. Tarefas Investigativas na Aprendizagem de Homotetia Utilizando os Materiais de Desenho Geométricos e o *Software* Geogebra, por Alunos do 9.º Ano de uma Escola da Rede Estadual do Município de Rio Branco, Acre. 2019. 174p. Dissertação (Mestrado Profissional em Ensino de Ciências e Matemática). Universidade Federal do Acre, Rio Branco, AC. 2019. Disponível em:

http://www2.ufac.br/mpecim/menu/dissertacoes/turmar-2017/dissertacao-sara-jemima-carneiro-dos-reis.pdf. Acesso em 09 de nov. de 2021.

SÁ, SÔNIA. DESENHO 9º ANO - Ensino Fundamental II. COLÉGIO PEDRO II - CAMPUS HUMAITÁ II DEPARTAMENTO DE DESENHO,2020. UESCII, 2011. Disponível em:

http://www.cp2.g12.br/blog/humaitaii/files/2020/04/APOSTILA-9-ANO-2_2020.pdf. Acesso em: 27 de mar. 2022.

WOLFF, Maria Eliza; SILVA, Dirceu Pereira da. **O** software geogebra no ensino da matemática. Os desafios da escola pública paranaense na perspectiva do professor PDE, Paraná, v.I, 2013.